Language versions

Press releases are available in several languages and from a number of sources; the exact content of the press releases from the different sources can vary depending on the contributions from local researchers.

English: ESO | University of Edinburgh
Nederlands: NOVA | ESO
Deutsch: Uni Bonn | ESO
Italiano: INAF | ESO
For other languages please see the translations of the ESO press release.


Dark Matter May be Smoother than Expected

Careful study of large area of sky imaged by VST reveals intriguing result

ESO Press release 1642, 7 December 2016

Dark matter map of KiDS survey region (region G12). Credit: Kilo—Degree Survey Collaboration/H. Hildebrandt & B. Giblin/ESO

Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought. An international team used data from the Kilo Degree Survey (KiDS) to study how the light from about 15 million distant galaxies was affected by the gravitational influence of matter on the largest scales in the Universe. The results appear to be in disagreement with earlier results from the Planck satellite.

Hendrik Hildebrandt from the Argelander—Institut für Astronomie in Bonn, Germany and Massimo Viola from the Leiden Observatory in the Netherlands led a team of astronomers [1] from institutions around the world who processed images from the Kilo Degree Survey (KiDS), which was made with ESO's VLT Survey Telescope (VST) in Chile. For their analysis, they used images from the survey that covered five patches of the sky covering a total area of around 2200 times the size of the full Moon [2], and containing around 15 million galaxies.

By exploiting the exquisite image quality available to the VST at the Paranal site, and using innovative computer software, the team were able to carry out one of the most precise measurements ever made of an effect known as cosmic shear. This is a subtle variant of weak gravitational lensing, in which the light emitted from distant galaxies is slightly warped by the gravitational effect of large amounts of matter, such as galaxy clusters.

In cosmic shear, it is not galaxy clusters but large—scale structures in the Universe that warp the light, which produces an even smaller effect. Very wide and deep surveys, such as KiDS, are needed to ensure that the very weak cosmic shear signal is strong enough to be measured and can be used by astronomers to map the distribution of gravitating matter. This study takes in the largest total area of the sky to ever be mapped with this technique so far.

Intriguingly, the results of their analysis appear to be inconsistent with deductions from the results of the European Space Agency's Planck satellite, the leading space mission probing the fundamental properties of the Universe. In particular, the KiDS team's measurement of how clumpy matter is throughout the Universe — a key cosmological parameter — is significantly lower than the value derived from the Planck data [3].

Massimo Viola explains: "This latest result indicates that dark matter in the cosmic web, which accounts for about one—quarter of the content of the Universe, is less clumpy than we previously believed."

Dark matter remains elusive to detection, its presence only inferred from its gravitational effects. Studies like these are the best current way to determine the shape, scale and distribution of this invisible material.

The surprise result of this study also has implications for our wider understanding of the Universe, and how it has evolved during its almost 14—billion—year history. Such an apparent disagreement with previously established results from Planck means that astronomers may now have to reformulate their understanding of some fundamental aspects of the development of the Universe.

Hendrik Hildebrandt comments: "Our findings will help to refine our theoretical models of how the Universe has grown from its inception up to the present day."

The KiDS analysis of data from the VST is an important step but future telescopes are expected to take even wider and deeper surveys of the sky.

The co—leader of the study, Catherine Heymans of the University of Edinburgh in the UK adds: "Unravelling what has happened since the Big Bang is a complex challenge, but by continuing to study the distant skies, we can build a picture of how our modern Universe has evolved."

"We see an intriguing discrepancy with Planck cosmology at the moment. Future missions such as the Euclid satellite and the Large Synoptic Survey Telescope will allow us to repeat these measurements and better understand what the Universe is really telling us," concludes Konrad Kuijken (Leiden Observatory, the Netherlands), who is principal investigator of the KiDS survey.

Notes

[1] The international KiDS team of researchers includes scientists from Germany, the Netherlands, the UK, Australia, Italy, Malta and Canada.

[2] This corresponds to about 450 square degrees, or a little more than 1% of the entire sky.

[3] The parameter measured is called S8. Its value is a combination of the size of density fluctuations in, and the average density of, a section of the Universe. Large fluctuations in lower density parts of the Universe have an effect similar to that of smaller amplitude fluctuations in denser regions and the two cannot be distinguished by observations of weak lensing. The 8 refers to a cell size of 8 megaparsecs, which is used by convention in such studies.

More information

This research was presented in the paper entitled "KiDS—450: Cosmological parameter constraints from tomographic weak gravitational lensing", by H. Hildebrandt et al., to appear in Monthly Notices of the Royal Astronomical Society.

The team is composed of H. Hildebrandt (Argelander—Institut für Astronomie, Bonn, Germany), M. Viola (Leiden Observatory, Leiden University, Leiden, the Netherlands), C. Heymans (Institute for Astronomy, University of Edinburgh, Edinburgh, UK), S. Joudaki (Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Hawthorn, Australia), K. Kuijken (Leiden Observatory, Leiden University, Leiden, the Netherlands), C. Blake (Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Hawthorn, Australia), T. Erben (Argelander—Institut für Astronomie, Bonn, Germany), B. Joachimi (University College London, London, UK), D Klaes (Argelander—Institut für Astronomie, Bonn, Germany), L. Miller (Department of Physics, University of Oxford, Oxford, UK), C.B. Morrison (Argelander—Institut für Astronomie, Bonn, Germany), R. Nakajima (Argelander—Institut für Astronomie, Bonn, Germany), G. Verdoes Kleijn (Kapteyn Astronomical Institute, University of Groningen, Groningen, the Netherlands), A. Amon (Institute for Astronomy, University of Edinburgh, Edinburgh, UK), A. Choi (Institute for Astronomy, University of Edinburgh, Edinburgh, UK), G. Covone (Department of Physics, University of Napoli Federico II, Napoli, Italy), J.T.A. de Jong (Leiden Observatory, Leiden University, Leiden, the Netherlands), A. Dvornik (Leiden Observatory, Leiden University, Leiden, the Netherlands), I. Fenech Conti (Institute of Space Sciences and Astronomy (ISSA), University of Malta, Msida, Malta; Department of Physics, University of Malta, Msida, Malta), A. Grado (INAF — Osservatorio Astronomico di Capodimonte, Napoli, Italy), J. Harnois—Déraps (Institute for Astronomy, University of Edinburgh, Edinburgh, UK; Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada), R. Herbonnet (Leiden Observatory, Leiden University, Leiden, the Netherlands), H. Hoekstra (Leiden Observatory, Leiden University, Leiden, the Netherlands), F. Köhlinger (Leiden Observatory, Leiden University, Leiden, the Netherlands), J. McFarland (Kapteyn Astronomical Institute, University of Groningen, Groningen, the Netherlands), A. Mead (Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada), J. Merten (Department of Physics, University of Oxford, Oxford, UK), N. Napolitano (INAF — Osservatorio Astronomico di Capodimonte, Napoli, Italy), J.A. Peacock (Institute for Astronomy, University of Edinburgh, Edinburgh, UK), M. Radovich (INAF — Osservatorio Astronomico di Padova, Padova, Italy), P. Schneider (Argelander—Institut für Astronomie, Bonn, Germany), P. Simon (Argelander—Institut für Astronomie, Bonn, Germany), E.A. Valentijn (Kapteyn Astronomical Institute, University of Groningen, Groningen, the Netherlands), J.L. van den Busch (Argelander—Institut für Astronomie, Bonn, Germany), E. van Uitert (University College London, London, UK) and L. van Waerbeke (Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground—based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground—based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world—class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible—light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39—metre European Extremely Large Telescope, the E—ELT, which will become "the world's biggest eye on the sky".

Contacts

  • Hendrik Hildebrandt, Argelander—Institut für Astronomie, Bonn, Germany, hendrik@astro.uni—bonn.de
  • Massimo Viola, Leiden Observatory, Leiden, the Netherlands, viola@strw.leidenuniv.nl
  • Catherine Heymans, Institute for Astronomy, University of Edinburgh, Edinburgh, United Kingdom, heymans@roe.ac.uk
  • Koen Kuijken, Leiden Observatory, Leiden, the Netherlands, kuijken@strw.leidenuniv.nl

Links

Images

Dark matter map of KiDS survey region (region G12).

Credit: Kilo—Degree Survey Collaboration/H. Hildebrandt & B. Giblin/ESO

Publication TIFF (23.6 MB)
Publication JPEG (660.9 KB MB)
Large JPEG (2.2 MB)
Screensize JPEG (92.3 KB)

Dark matter map of KiDS survey region (region G9).

Credit: Kilo—Degree Survey Collaboration/H. Hildebrandt & B. Giblin/ESO

Publication TIFF (22.1 MB)
Publication JPEG (612.6 KB MB)
Large JPEG (2.1 MB)
Screensize JPEG (77.6 KB)

Dark matter map of KiDS survey region (region G15).

Credit: Kilo—Degree Survey Collaboration/H. Hildebrandt & B. Giblin/ESO

Publication TIFF (25.3 MB)
Publication JPEG (712.4 KB MB)
Large JPEG (2.5 MB)
Screensize JPEG (90.4 KB)